Folding Fractions
Today's post is a little bit different than usual, but it's somewhat math-related, so I figured I'd post it here anyway. Recently, I folded Eric Joisel's origami dwarf
My folded dwarf
(you can see Joisel's rough instructions for the dwarf here). One interesting feature of the dwarf that Joisel points out in his instructions is that the dwarf is folded out of a 28 by 28 grid. As Joisel observes, usually origami models use grids whose dimensions are powers of 2 - it's simple to fold a piece of paper in half repeatedly to obtain an 8 by 8 grid, or a 32 by 32 grid. But 28 by 28 is trickier. In fact, Joisel advises you to use a ruler to form the grid instead of bothering to fold 28ths by hand. But it turns out that it's not so hard to fold 28ths after all. That's what I'm writing about today. But before jumping straight into folding 28ths, we'll start with a slightly easier topic.
Folding a Square in Thirds
Here is a nice little folding sequence to fold a piece of paper in thirds. First, take your square and fold it in half. Unfold, and you are left with a vertical crease cutting the square in half.
Why Does This Work?
There's probably some sort of clever argument you can make using Euclidean geometry and similar triangles and the like to show that this algorithm really does find you one third of the paper. But I think it's easier to use coordinate geometry instead. Let's imagine our square of paper as living in the plane so that its right edge is the $y$ axis and the bottom edge is the $x$ axis.
Generalizing to Arbitrary Fractions
The simple fact that $3 = 2+1$ played a crucial role in our proof above. The $2x$ on the right hand side and the single $x$ on the left hand side combined to give us a factor of $3x$. And that $3$ became the denominator of $1/3$. So what would happen if our right hand side were $-4x$ instead of $-2x$?
\[\begin{aligned} x + 1 &= -4x\\ 5x &= -1\\ x &= -1/5 \end{aligned}\]Then, instead of finding a point $1/3$ of the way across the page, we would find a point $1/5$ of the way across the page! In general, if we can fold a line with a slope of $-n$, we can then fold the paper into segments of width $1/(n+1)$.
And how do we fold a line of slope $-n$? Earlier we folded a line with slope $-2$ by first folding the paper in half, and then folding a diagonal cutting one of the halves in half. This creates a line of slope $-2$ because half of a square is a $2:1$ rectangle, and its diagonal has slope $-2$. Similarly, we can use an $n:1$ rectangle to fold a diagonal of slope $-n$.
So given a fold $1/n$ of the way across the paper, we can find $1/(n+1)$ as follows: Suppose we start with a square that has a crease $1/n$ of the way across.
Folding 28ths
This procedure gives us a straightforward, if tedious method of folding a square into 28ths: First fold it in half, then find $1/3$, then use $1/3$ to find $1/4$, then use $1/4$ to find $1/5$, and so on, until we finally use $1/27$ to find $1/28$. Of course, this is a terrible idea for several reasons. It would take a long time to fold, and would leave countless extra creases on your square. With a little bit of thought, we can fold 28ths with far less effort, and making minimal extra creases.
$28 = 4 \cdot 7$. Folding things in quarters is easy: just fold in half twice. So the only difficult part of folding 28ths is folding 7ths. $7 = 6 + 1$, so we can obtain $1/7$ by first folding $1/6$. And $1/6$ is just half of $1/3$, which we already know how to fold. Here is whole folding sequence:
First, take your square and fold it in half. Unfold, and you are left with a vertical crease cutting the square in half.
No comments: